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A Practical Compressed Sensing-Based
Pan-Sharpening Method

Cheng Jiang, Hongyan Zhang, Huanfeng Shen, and Liangpei Zhang

Abstract—High-resolution multispectral (HRM) images are
widely used in many remote sensing applications. Using the
pan-sharpening technique, a low-resolution multispectral (LRM)
image and a high-resolution panchromatic (HRP) image can be
fused to an HRM image. This letter proposes a new compressed
sensing (CS)-based pan-sharpening method which views the image
observation model as a measurement process in the CS theory
and constructs a joint dictionary from LRM and HRP images
in which the HRM is sparse. The novel joint dictionary makes
the method practical in fusing real remote sensing images, and
a tradeoff parameter is added in the image observation model to
improve the results. The proposed algorithm is tested on simulated
and real IKONOS images, and it results in improved image quality
compared to other well-known methods in terms of both objective
measurements and visual evaluation.

Index Terms—Compressed sensing (CS), image fusion, joint
dictionary, tradeoff.

I. INTRODUCTION

W ITH the rapid development of satellite sensors, remote
sensing image data acquired by high-resolution opti-

cal sensors, such as IKONOS, QuickBird, and so on, have
been widely used. Since the sensors have a physical tradeoff
between the spatial and the spectral resolutions [1], [2], the
acquired multispectral (MS) images often have coarser spatial
resolution than the corresponding panchromatic (PAN) im-
ages. Pan-sharpening is a technique that artificially produces a
high-resolution multispectral (HRM) image by fusing a high-
resolution panchromatic (HRP) image and a low-resolution
multispectral (LRM) image [3]. By the fusion of these images,
we can overcome the limitations of information obtained from
individual sources and obtain a better understanding of the ob-
served scene [1], e.g., an HRM image offers more information
than an LRM image for an urban area classification [4].
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For more than two decades, a lot of image fusion algorithms
have been proposed. Traditional projection-substitution-based
methods include intensity–hue–saturation (IHS) [5], principal
component analysis (PCA) [6], and Gram–Schmidt (GS) [7].
The Brovey transform [8], which belongs to the arithmetic-
based methods, is another popular early algorithm. All the
aforementioned methods are reported to have results with good
spatial details but severe color distortions [8]. In the first decade
of the 21st century, wavelet-based methods [9], [10] became
well known for their reduced color distortions. They adopt
the amélioration de la résolution spatiale par injection de
structures (ARSIS) concept, which extracts details from the
HRP image and injects the details using different strategies [10]
into the LRM image. In the last few years, many model-based
methods [1], [11], [12] have been proposed with better spatial
and spectral performance than before.

Recently, Li and Yang [12] proposed a model-based method
using a compressed sensing (CS) technique. Due to the ad-
vantages of the method in that it selects atom patches from
the dictionary adaptively for each patch and those patches are
the most relevant ones in the dictionary to represent the given
LRM and HRP images, the reconstructed HRM images from
the selected patches can satisfactorily preserve both the spatial
and the spectral information of the source images [12]. In this
method, HRM images with the same resolution as the desired
fused image are used to construct the dictionary, which has
proved to be applicable for simulated remote sensing images.

In view of this, we propose a practical CS-based pan-
sharpening method. The contribution of this letter is twofold.
First, we propose to construct a novel joint dictionary from both
LRM and HRP training images, making the method applica-
ble and practical for both simulated and real remote sensing
images. Second, we adopt the observation model, which ap-
proximately views the LRM image as the decimation of the
original HRM image and takes the HRP image as the linear
combination of all bands of the HRM image. In our model, a
tradeoff parameter, which balances the contribution of LRM
and HRP for the final pan-sharpened results, is proposed to
achieve better fusion results.

II. PAN-SHARPENING METHOD BASED ON CS

A. CS

In 2006, Candès et al. [13] and Donoho [14] proposed a
new sparse sampling theory, namely, CS theory. A sparse signal
is a signal that can be represented as a linear combination of
relatively few base elements in a basis or an overcomplete dic-
tionary. Studies have shown that such high-dimensional sparse
signals can be accurately recovered from a drastically smaller
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number of (even randomly selected) linear measurements [15].
The measurement process is written as

y = Φx = ΦΨα (1)

where x is the vector of the original signal, Φ is referred to as
the measurement matrix, and y is the vector of measurements.
Ψ is the transform matrix or the so-called overcomplete dictio-
nary that maps the sparse representation α into x.

Using measurements to recover the original signal is a recon-
struction problem, and various methods have been investigated.
Basis pursuit (BP) [16] may be the most well-known one, which
views the reconstruction problem as an l1 optimization problem
formed as

minλ‖α‖1 + ‖y − ΦΨα‖22 (2)

where λ is called the regularization parameter. The main idea
of BP is to convert (2) to the standard linear program, which
is a mature technique at present. Other typical methods, like
orthogonal matching pursuit and iteratively reweighted least
squares, can be found in [17].

B. Pan-Sharpening Method Based on CS

First, we introduce the image observation model to relate
the desired HRM image to both the observed LRM and HRP
images, which is the prerequisite for the remote sensing image
pan-sharpening method based on CS.

The degradation model between the LRM image and the
HRM image is written as

yMS = M1x+ v1 (3)

where yMS and x are column vectors (lexicographically or-
dering its pixels) representing the LRM image and the HRM
image. M1 is a matrix representing the blurring, the sensor
integration function, and the spatial subsampling, and v1 is the
noise vector.

The linear model between the HRP image and each band
image of HRM is as follows:

yPAN =

B∑
b=1

wbxb + v2 = M2x+ v2 (4)

where column vector yPAN represents the HRP image, wb is
the weight, and column vector xb represents the bth band image
of the HRM image. M2 is the linear combination matrix, and
v2 is the noise vector.

We propose a tradeoff parameter β to combine (3) and (4) to
form the observation model

y = Mx+ v (5)

where y =
[

yMS

β∗yPAN

]
, M =

[
M1

β∗M2

]
, and v =

[
v1

β∗v2

]
. Here, the

tradeoff parameter β is used to balance the contribution of
LRM and HRP for the final pan-sharpened results. The detailed
analysis will be given later.

From the perspective of CS, the observation model is similar
to the measurement process. Thus, we take the HRM image
as the original signal in the CS theory and assume that it is
sparse in some image bases’ space, and take LRM and HRP

images as measurements. Then, based on the CS reconstruction
theory, a sparse representation of x can be adopted to solve the
underdetermined observation model.

Assuming that the HRM image is sparse in a dictionary A, x
can be expressed as

x = Aα (6)

where α is a sparse vector with only a small number of
nonzero components. Thus, using the sparse representation, the
pan-sharpening model can be converted to an l1 optimization
problem formed by

minλ‖α‖1 + ‖y −MAα‖22. (7)

BP is adopted to solve (7). After the optimal α is obtained, x
can be recovered using (6).

In fact, (7) is equal to (8) as follows:

minλ‖α‖1+
(
‖yMS−M1Aα‖22+β2‖yPAN−M2Aα‖22

)
. (8)

The term ‖yMS −M1Aα‖22 represents the data fidelity of the
LRM image that provides a force of the conformance of the
desired HRM image to the observed LRM image. The term
‖yPAN −M2Aα‖22 provides a measure of the conformance of
the HRM image to the HRP image. Therefore, the tradeoff β
controls the relative contribution of LRM and HRP images to
the overall cost function in (8). Observe that (5) is more general
than the model in [12], which is just a special case of (5) with
β = 1.

C. Joint Dictionary Construction

As we know, a good pan-sharpening result should make use
of the spectral information of the LRM image and the spatial
information of the HRP image as much as possible. Therefore,
a simple idea is to use LRM and HRP training images to
jointly construct the overcomplete dictionary. Then, with the
l1 optimization problem in (7), the most relevant spectral and
spatial characteristics can be automatically extracted from the
joint dictionary and combined to represent the HRM image.

The dictionary construction flowchart is shown in Fig. 1,
which consists of four steps. The R, G, B, NIR, and PAN
represent the red, green, blue, near-infrared, and panchromatic
band images, respectively.

1) First, we get N training image pairs (N LRM images and
N corresponding HRP images) and resample the LRM
images to the same resolution as the HRP images, using
cubic convolution in our experiments.

2) For the ith training image pair, we use all nonoverlapping
p× p (p should be the same as the patch size of the HRM
image discussed in Section II-D) raw patches of each
LRM band image and the HRP image together as the
ith samples and use the well-known dictionary training
method, K-SVD [18], to obtain the ith trained dictionary
Ai(i = 1 : N).

3) After all image pairs are trained separately, Ai are con-
catenated to get At, which is the trained dictionary of all
N training image pairs

At = [A1 A2 . . . AN ]. (9)
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Fig. 1. Proposed dictionary construction flowchart.

Here, we train N training image pairs separately and
then concatenate them, instead of training all the images
together, mainly because of the concerns of the memory
and computational complexity using K-SVD.

4) At is the trained dictionary in which each band of the
fused HRM image is sparse. Since we process all the
bands as a vector in our model, we expand At to A

A =

⎡
⎢⎣
At

At

At

At

⎤
⎥⎦ . (10)

With the dictionary A, the fused HRM image can be sparsely
represented as

x =

⎡
⎢⎣
x1

x2

x3

x4

⎤
⎥⎦ =

⎡
⎢⎣
At

At

At

At

⎤
⎥⎦

⎡
⎢⎣
α1

α2

α3

α4

⎤
⎥⎦ = Aα. (11)

D. Patch-Based Processing Strategy

Since BP and K-SVD cannot be applied to a large image
directly [12], [18], [19], the proposed method is operated on
image patches, as shown in Fig. 2. Based on the discussion in
[19], the size of the image patch in the HRM is set as 8 × 8,
corresponding to 8 × 8 in the HRP image and 2 × 2 in the
LRM image, as the spatial resolution ratio between the LRM
image and the HRP image is 4. Therefore, the matrix M1 in (3)
is constructed as (1/16) · I8×8 ⊗ (1T ⊗ (I2×2 ⊗ 1T )), where
IN×N is an N ×N identity matrix and 1 is a 4 × 1 vector
with all entries equal to 1. The matrix M2 in (4) is constructed
as (w1I w2I w3I w4I), where I is a 64 × 64 identity matrix.
We process all patches in raster-scan order, from left-top to
right-bottom with steps of one pixel in the LRM image and
four pixels in the HRP image [12]. After all patches have been
processed, the solution is averaged on the overlapped regions.

Fig. 2. Patch-based processing strategy.

III. EXPERIMENTS

To test the proposed method, we conduct both simulated ex-
periments and real experiments using IKONOS images. In the
simulated experiments, the 4-m resolution MS image and the
1-m resolution PAN image are degraded to a 16-m resolution
MS image and a 4-m resolution PAN image, respectively, with
low-pass filter and decimation operator by four to yield one, and
then, pan-sharpening methods are selected to fuse them to a 4-m
resolution MS image. Finally, we compare the fused MS image
with the original HRM image to perform evaluations. We com-
pare our method to fast IHS (FIHS) [5], GS [7], à-trous wavelet
transform-based pan-sharpening (AWLP) [9], the method in
[12], and the method in [12] improved with tradeoff. In the real
experiments, we use the 4-m resolution MS image and the 1-m
resolution PAN image directly to produce a 1-m resolution MS
image. Due to the lack of 1-m resolution HRM training images,
all the aforementioned methods are compared, except for the
method in [12] and the method in [12] improved with tradeoff.

A. Simulated Experiments

The dictionary of the proposed method is constructed from
20 pairs of a degraded 16-m resolution MS image and its corre-
sponding 4-m resolution PAN image. We degrade the training
images with low-pass filter and decimation operator by four to
yield one. The K-SVD parameter “EData,” the target error in
L2-norm for coding each signal, is set as 100; the parameter
“dictsize,” which represents the output dictionary size, is set as
1000; and the other parameters are set to default. Therefore, the
Ai is a 64 × 1000 matrix. The λ in (7) is set as 1, around which
the BP algorithm is stable. In (4), we set w1 = w2 = w3 =
w4 = 0.25 with no bias. The tradeoff β in (5) is set empirically
when most of the indexes reach their best performance. We use
the following five quality indexes to conduct quantitative as-
sessments: correlation coefficient (CC), root-mean-square error
(RMSE), spectral angle mapper (SAM), erreur relative globale
adimensionnelle de synthèse (ERGAS), and Q4.

Fig. 3 shows the fusion results. By visually comparing the
fused images with the original HMS images, we can see that
all the experimental methods can effectively pan-sharpen the
LMS image data. However, the proposed method shows the best
spectral preserving performance, for its color looks the most
similar to the original HRM. On the whole, the proposed
method not only provides high-quality spatial details but also
satisfactorily preserves spectral information.

The quantitative assessment results are shown in Table I,
in which the best results for each quality index are labeled in
bold. The quantitative assessment results are consistent with the
visual evaluations. It is observed that every index of the method
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Fig. 3. Simulated experiment. (a) Resampled LRM (RGB, 256×256, 16 m).
(b) Original HRM (RGB, 256 × 256, 4 m). (c) FIHS. (d) GS. (e) AWLP.
(f) Method in [12]. (g) Method in [12] improved with tradeoff (β = 0.25).
(h) Proposed method (β = 0.0001).

in [12] improved with the proposed tradeoff is better than that of
the method in [12], which indicates the effectiveness and neces-
sity of the proposed tradeoff parameter. From the table, we can
see that except for the results of the method in [12] improved
with the proposed tradeoff, the proposed method outperforms
the existing methods in almost all the quality indexes.

The impact of β is investigated in Tables II and III, in which
the best results for each quality index are labeled in bold. It

TABLE I
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT

SHOWN IN FIG. 3. B, G, R, AND NIR REPRESENT THE RESULTS

OF THE BLUE, GREEN, RED, AND NEAR-INFRARED BANDS,
RESPECTIVELY, AND THE Avg IS THE AVERAGE RESULT

AMONG THE RESULTS OF R, G, B, AND NIR

TABLE II
QUANTITATIVE ASSESSMENT RESULTS OF THE METHOD IN [12]

IMPROVED WITH β = 0.5K (K IS FROM −1 TO 5) USING THE

SAME DATA AS FIG. 3. CCAVG AND RMSEAVG REPRESENT

THE AVERAGE RESULT AMONG ALL THE CC AND RMSE
RESULTS OF ALL BANDS, RESPECTIVELY

TABLE III
QUANTITATIVE ASSESSMENT RESULTS OF THE PROPOSED METHOD

WITH β = 0.1K (K IS FROM −1 TO 5) USING THE SAME DATA AS FIG. 3.
CCAVG AND RMSEAVG REPRESENT THE AVERAGE RESULT AMONG

ALL THE CC AND RMSE RESULTS OF ALL BANDS, RESPECTIVELY

shows that all the indexes vary with β and share the same
trend, which improves gradually to the best but drops after the
top value. Moreover, the best performance of every index is
achieved at the same value of β, except for the SAM index,
which is a little offset. It is observed that the optimal β in
Table II is different from that in Table III, and the result of
the proposed method is more robust to β. The reason for this
is that they adopt different dictionaries. It should be noted
that, even for the same method and for the same dictionary,
the optimal β may vary from different experimental images.
How to determine β automatically and precisely is still an open
problem and needs further investigation.
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Fig. 4. Real experiment. (a) Resampled LRM (RGB, 256 × 256, 4 m).
(b) HRP (256 × 256, 1 m). (c) FIHS. (d) GS. (e) AWLP. (f) Proposed method
(β = 0.0001).

B. Real Experiments

The dictionary of the proposed method is constructed from
20 pairs of a 4-m resolution MS image and its corresponding
1-m resolution PAN image. The tradeoff parameter β is set as
0.0001 empirically, and the results are shown in Fig. 4. This
shows that the proposed method achieves both visually good
spatial and spectral effects. Moreover, we found that the GS
result is also good visually. The difference between the GS
result and the proposed method is that the GS result is brighter,
particularly in vegetation areas, so GS is good for visual in-
terpretation. However, from Wald’s protocol [20] that any syn-
thetic image should be as identical as possible to the image that
the corresponding sensor would observe with the highest spatial
resolution, the proposed method shows significant advantages.

IV. CONCLUSION

This letter proposes a new CS-based image fusion method,
which is applicable, in practice, to fuse real remote sensing
images by constructing a joint dictionary from HRP and LRM
images. To improve the effectiveness, a tradeoff parameter is

also proposed in the observation model. The proposed method
is compared with the typical FIHS, GS, AWLP methods, and
the state-of-the-art method in [12]. The experimental results
suggest that the proposed method can achieve competitive
spatial quality compared to the other well-known methods and
recover most of the spectral information that the corresponding
sensor would observe with the highest spatial resolution.
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